Abstract

Steady-state simulators are usually applied for design, techno-economic analysis and optimization of industrial processes. However, sometimes dynamic systems are important parts of the process, which cannot be disregarded. Coupling a dynamic model within a full-plant for steady-state simulation is a challenging task, whatever might be the simulator concept, either sequential or equation-oriented. An alternative to solve this problem is the use of surrogate models to substitute specific dynamic models, by taking the variable time as an extra input of the meta-model. This methodology was applied in an equation-oriented simulator (EMSO) by the use of Kriging meta-models. A case study involving the production of bioethanol from sugarcane was used to demonstrate the capability of this approach. A Kriging meta-model used to substitute the kinetic model of an enzymatic hydrolysis reactor was conjugated into the global plant simulation and an optimization problem was successfully solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.