Abstract
Computationally expensive constrained optimization problems are challenging owing to their high complexity and computational cost. To solve these problems efficiently, a kriging-assisted bi-objective constrained global optimization (BOCGO) algorithm is developed, where three phases with three bi-objective subproblems are performed. In phase I, the constraints are searched locally and globally to find the feasible region. Once a feasible region has been located, the two terms of the constrained expected improvement function are utilized to exploit and explore the feasible region in phase II. As the kriging models are accurate enough in the concerned region, a local search is processed to improve the optimal solution in phase III. The capability of the BOCGO algorithm is demonstrated by comparison with two classical and two state-of-the-art algorithms on 20 problems and an engineering simulation problem. The results show that the BOCGO algorithm performs better in more than three-fifths of problems, illustrating its effectiveness and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.