Abstract

In this study, simultaneous measurement of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) on flat metallic surfaces was demonstrated in a setup based on the Kretschmann configuration at acoustic frequency. This asset facilitates matching the photon and the surface plasmon polaritons wavevectors by tunneling the photon in the total internal reflection geometry and we demonstrate the compensation for the absence of hotspots typical on rough surfaces. The optomechanical asset allows detecting the two signals and prevents their interference. Experimental and numerical analyses were done for characterizing the two signals. The results emphasize the enhancement of the electromagnetic field at the surface, which provides high sensitivity for detecting the signals coming from the Raman probe molecules such as Congo red and thiols such as cysteamine. The combination of simultaneous SPR–SERS microspectroscopy at low frequencies opens up interesting prospects that facilitate experimental conditions using standard SPR setups, with a dramatic reduction in sensor cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call