Abstract

The stochastic partial differential equation proposed nearly three decades ago by Kardar, Parisi and Zhang (KPZ) continues to inspire, intrigue and confound its many admirers. Here, we i) pay debts to heroic predecessors, ii) highlight additional, experimentally relevant aspects of the recently solved 1+1 KPZ problem, iii) use an expanding substrates formalism to gain access to the 3d radial KPZ equation and, lastly, iv) examining extremal paths on disordered hierarchical lattices, set our gaze upon the fate of $d$=$\infty$ KPZ. Clearly, there remains ample unexplored territory within the realm of KPZ and, for the hearty, much work to be done, especially in higher dimensions, where numerical and renormalization group methods are providing a deeper understanding of this iconic equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call