Abstract
Online social networks provide relevant information on users’ opinion about different themes. Thus, applications, such as monitoring and recommendation systems (RS) can collect and analyze this data. This paper presents a knowledge-based recommendation system (KBRS), which includes an emotional health monitoring system to detect users with potential psychological disturbances, specifically, depression and stress. Depending on the monitoring results, the KBRS, based on ontologies and sentiment analysis, is activated to send happy, calm, relaxing, or motivational messages to users with psychological disturbances. Also, the solution includes a mechanism to send warning messages to authorized persons, in case a depression disturbance is detected by the monitoring system. The detection of sentences with depressive and stressful content is performed through a convolutional neural network and a bidirectional long short-term memory - recurrent neural networks (RNN); the proposed method reached an accuracy of 0.89 and 0.90 to detect depressed and stressed users, respectively. Experimental results show that the proposed KBRS reached a rating of 94% of very satisfied users, as opposed to 69% reached by a RS without the use of neither a sentiment metric nor ontologies. Additionally, subjective test results demonstrated that the proposed solution consumes low memory, processing, and energy from current mobile electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.