Abstract

BackgroundTo investigate the feasibility of a knowledge-based automated intensity-modulated radiation therapy (IMRT) planning technique for locally advanced nasopharyngeal carcinoma (NPC) radiotherapy.MethodsOne hundred forty NPC patients treated with definitive radiation therapy with the step-and-shoot IMRT techniques were retrospectively selected and separated into a knowledge library (n = 115) and a test library (n = 25). For each patient in the knowledge library, the overlap volume histogram (OVH), target volume histogram (TVH) and dose objectives were extracted from the manually generated plan. 5-fold cross validation was performed to divide the patients in the knowledge library into 5 groups before validating one group by using the other 4 groups to train each neural network (NN) machine learning models. For patients in the test library, their OVH and TVH were then used by the trained models to predict a corresponding set of mean dose objectives, which were subsequently used to generate automated plans (APs) in Pinnacle planning system via an in-house developed automated scripting system. All APs were obtained after a single step of optimization. Manual plans (MPs) for the test patients were generated by an experienced medical physicist strictly following the established clinical protocols. The qualities of the APs and MPs were evaluated by an attending radiation oncologist. The dosimetric parameters for planning target volume (PTV) coverage and the organs-at-risk (OAR) sparing were also quantitatively measured and compared using Mann-Whitney U test and Bonferroni correction.ResultsAPs and MPs had the same rating for more than 80% of the patients (19 out of 25) in the test group. Both AP and MP achieved PTV coverage criteria for no less than 80% of the patients. For each OAR, the number of APs achieving its criterion was similar to that in the MPs. The AP approach improved planning efficiency by greatly reducing the planning duration to about 17% of the MP (9.85 ± 1.13 min vs. 57.10 ± 6.35 min).ConclusionA robust and effective knowledge-based IMRT treatment planning technique for locally advanced NPC is developed. Patient specific dose objectives can be predicted by trained NN models based on the individual’s OVH and clinical TVH goals. The automated planning scripts can use these dose objectives to efficiently generate APs with largely shortened planning time. These APs had comparable dosimetric qualities when compared to our clinic’s manual plans.

Highlights

  • To investigate the feasibility of a knowledge-based automated intensity-modulated radiation therapy (IMRT) planning technique for locally advanced nasopharyngeal carcinoma (NPC) radiotherapy

  • Each patient was immobilised in a supine position with a thermoplastic mask and underwent contrast enhanced computed tomography (CT) (Brilliance CT Big Bore; Philips Medical Systems Inc., Cleveland, OH, USA) at a 3-mm slice spacing from the skull vertex to the level of 2 cm below the clavicles

  • No significant difference was observed in the D5, Conformity index (CI), and Homogeneity index (HI) of planning target volume (PTV) between Automated plan (AP) and Manual plan (MP) (P > 0.0015)

Read more

Summary

Introduction

To investigate the feasibility of a knowledge-based automated intensity-modulated radiation therapy (IMRT) planning technique for locally advanced nasopharyngeal carcinoma (NPC) radiotherapy. Intensity-modulated radiation therapy (IMRT) technique has been considered as a common treatment for NPC, because it delivers highly conformal doses to the targets and effectively spares the OARs, potentially improving the local control rate and reducing radiation-related toxicities [2]. It is time-consuming to manually generate an IMRT plan due to its intrinsic trial-and-error process. The efficacy of the knowledge-based autoplan technique for locally advanced NPC treatment planning still needs further investigation due to the particular challenges from the tumor and OAR anatomy in this disease

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.