Abstract

This paper proposes the application of formal methods for knowledge discovery from large quantity of data to reduce the complexity of Power Flow (PF) and Optimal Power Flow (OPF) problems. In particular, a knowledge-based paradigm for PF and OPF analyses is used to extract complex features, hidden relationships, and useful hypotheses potentially describing regularities in the problem solutions from operation data-sets. This is realized by designing a knowledge-extraction process based on Principal Components Analysis (PCA). The structural knowledge extracted by this process is then used to project the problem equations into a domain in which these equations can be solved more effectively. In this new domain, the cardinality of the PF and OPF problem is sensibly reduced and, consequently, the problem solutions can be obtained more efficiently. The effectiveness of the proposed framework is demonstrated with numerical results obtained for realistic power networks for several operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.