Abstract

Optimization algorithms have a wide range of applications in symmetry problems, such as graphs, networks, and pattern recognition. In this paper, a dynamic periodic multi-depot multi-trip vehicle routing model for scheduling test samples is constructed, which considers the differences in testing unit price and testing capacity of various agencies and introduces a cross-depot collaborative transport method. Both the cost and the testing time are minimized by determining the optimal sampling routes and testing agencies, subjecting to the constraints of vehicle capacity, number of vehicles, and delivery time. To solve the model, a knowledge-guided multi-objective shuffled frog leaping algorithm (KMOSFLA) is proposed. KMOSFLA adopts a convertible encoding mechanism to realize the diversified search in different search spaces. Three novel strategies are designed: the population initialization with historical information reuse, the leaping rule based on the greedy crossover and genetic recombination, and the objective-driven enhanced search. Systematic experimental studies are implemented. First, feasibility analyses of the model are carried out, where effectiveness of the cross-depot collaborative transport is validated and sensitivity analyses on two parameters (vehicle capacity and proportion of the third-party testing agencies) are performed. Then, the proposed algorithm KMOSFLA is compared with five state-of-the-art algorithms. Experimental results indicate that KMOSFLA can provide a set of non-dominated schedules with lower cost and shorter testing time in each scheduling period, which provides a reference for the dispatcher to make a final decision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.