Abstract
This paper proposes an automated knowledge synthesis and discovery framework to analyze published literature to identify and represent underlying mechanistic associations that aggravate chronic conditions due to COVID-19. We present a literature-based discovery approach that integrates text mining, knowledge graphs and ontologies to discover semantic associations between COVID-19 and chronic disease concepts that were represented as a complex disease knowledge network that can be queried to extract plausible mechanisms by which COVID-19 may be exacerbated by underlying chronic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.