Abstract

In this Minireview, a comparison of the binding niches of the PS II cofactors from several existing models of the PS II reaction center is provided. In particular, it discusses a three dimensional model of the Photosystem II (PS II) reaction center including D1, D2 and cytochrome b559 proteins from the green alga Chlamydomonas reinhardtii that was specifically generated for this Minireview. This model is the most complete to date and includes accessory chlorophyllzs, a manganese cluster, two molecules of β-carotene and cytochrome b559, all of which are essential components of the PS II reaction center. The modeling of the D1 and D2 proteins was primarily based on homology with the L and M subunits of the anoxygenic purple bacterial photosynthetic reaction centers. The non-homologous loop regions were built using a sequence specific approach by searching for the best-matched protein segments in the Protein Data Bank, and by imposing the matching conformations on the corresponding D1 and D2 regions. Cytochrome b559 which is in close proximity to D1 and D2 was tentatively modeled in α/β conformation and docked on the QB side of the PS II reaction center according to experimental suggestions. An alternate docking on the QA side is also shown for comparison. The cofactors in the PS II reaction center were modeled either by adopting the structures from the bacterial counterparts, when available, with modifications based on existing experimental data or by de novo modeling and docking in the most probable positions in the reaction center complex. The specific features of this model are the inclusion of the tetramanganese cluster (with calcium and chloride ions) in a open, C-shaped structure modeled within the D1/D2/cytochrome b559 complex with D1-D170, D1-E189, D1-D342 and D1-A344 as putative ligands; and the modeling of two cis β-carotenes and two accessory chlorophyllzs liganded by D1-H118 and D2-H117. We also analyzed residues in the model which may be involved in the D1 and D2 inter-protein interactions, as well as residues which may be involved in putative bicarbonate and water binding and transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call