Abstract

The reduction and replacement of in vivo tests have become crucial in terms of resources and animal benefits. The read-across approach reduces the number of substances to be tested, exploiting existing experimental data to predict the properties of untested substances. Currently, several tools have been developed to perform read-across, but other approaches, such as computational workflows, can offer a more flexible and less prescriptive approach. In this paper, we are introducing a workflow to support analogue identification for read-across. The implementation of the workflow was performed using a database of azole chemicals with in vitro toxicity data for human aromatase enzymes. The workflow identified analogues based on three similarities: structural similarity (StrS), metabolic similarity (MtS), and mechanistic similarity (McS). Our results showed how multiple similarity metrics can be combined within a read-across assessment. The use of the similarity based on metabolism and toxicological mechanism improved the predictions in particular for sensitivity. Beyond the results predicting a large population of substances, practical examples illustrate the advantages of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.