Abstract

Contemporary trends in science and technology are characterized by integration of biological and technical systems, like in nanotechnology, nanobiology, and quantum medicine. In our case, we were motivated by a necessity to understand charge transport through microtubular cytoskeleton as a constitutive part of acupuncture system. The high frequency component of acupuncture currents, widely exploited in microwave resonance stimulation of acupuncture system in the past decade, implies that explanation of the cytoplasmatic conductivity should be sought in the framework of Frohlich theory. Accordingly, in this paper we critically analyze the problem of the microwave coherent longitudinal electrical oscillations as a theoretical basis for understanding soliton phenomena in microtubules, showing that charged kink-soliton nonlinear microtubular excitations might be a good candidate for charge transport in microtubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.