Abstract

The mechanism of low-temperature plastic deformation is controlled by thermally activated dislocation movements. An evolutionary constitutive law based on the principles of deformation kinetics is described in this article. The constitutive law is expressed with a sinh function designed for computational efficiency. It is derived from rigorously defined kinetics principles. The approximation involved in the sinh function is defined so that in applications an exact evaluation can be made of the validity limits. The system of the constitutive law and the external constraints lead to the operational equations. Applications are developed for constant strain-rate loading, constant stress-rate loading, stress relaxation, creep, and ratchetting processes. The analysis provides a unified treatment for low-temperature plastic deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.