Abstract

This study aims to propose a kinetics-based model of fatigue crack growth rate coupling with temperature, strain level and damage degree for bituminous materials. The fatigue crack length is calculated by an energy-based mechanistic (EBM) approach, and kinetic parameters characterizing the fatigue crack growth rate are determined based on an Arrhenius equation. Results show that the logarithm of the fatigue crack growth rate is linear to the inverse of absolute temperature, and cracking activation energy is independent of strain level and damage degree. Besides, the proposed kinetics-based model can predict fatigue crack growth rate at arbitrary temperature, strain level and damage degree of bituminous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call