Abstract

The accelerating rate calorimetry is a powerful tool for thermal hazard evaluation. However, the existing kinetics approaches ignore the fact that the thermal inertia is varying during the pseudo-adiabatic reaction because of the changing of the sample’s heat capacity and heat loss. To overcome this shortcoming, the expression of the thermal inertia is amended based on the heat balance and transfer in this article. The arithmetic product of the sample’s heat capacity and the amended thermal inertia is obtained by merging the kinetic results of the DSC and ARC data. Then, the data from the ARC are corrected and the more reasonable values of the kinetic parameters are computed based on the varying thermal inertia consideration. With the typical n-order and autocatalytic decomposition experiments under the different sample masses, the validity of the proposed kinetic approach is verified. Meanwhile, the hypotheses of the proposed approach are analyzed and discussed in the end of the article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.