Abstract

A Fokker-Planck treatment of the current induced by a beam of fast ions circulating in a toroidal plasma is developed. The electron Fokker-Planck equation is first reduced to an integro-differential equation which is then solved analytically in the limiting cases of: (a) a large plasma Z and (b) a large ratio of the electron thermal velocity ve to the fast ion velocity vb. In addition, a numerical solution was obtained for the complete range of values of ve/vb and for several values of Z. It is found that the resulting net plasma current has a very different functional dependence upon electron temperature than that given by the conventional theoretical treatment in which the electrons are assumed to be Maxwellian. In particular, for ve > vb and Z = 1, which is the limit appropriate to many present tokamak experiments, the net current is found to be in the opposite direction to the fast-ion current. The theory is compared with recent measurements of this current which were made by using the Culham Levitron, and agreement is found between theory and experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.