Abstract

A thermal lattice Boltzmann equation (LBE) model within the framework of double distribution function (DDF) method is proposed from the continuous DDF Boltzmann equation, which has a clear physical significance. Since the discrete velocity set in present LBE model is not space filled, a Lax–Wendroff scheme is applied to solve the evolution equations by which the spatial interpolation of two distribution functions is overcome. To validate the model, some classical numerical tests include thermal Couette flow and natural convection flow are simulated, and the results agree well with the analytic solutions and other numerical results, which showed that the present model had the ability to describe the thermal fluid flow phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.