Abstract

The paper examines the mathematical and physical foundations for the kinetic theory of reactive turbulent flows, discussing the differences and relation between the kinetic and averaged equations, and comparing some solutions of the kinetic equations obtained by the Green's function method with those obtained by the approximate bimodal method. The kinetic method described consists essentially in constructing the probability density functions of the chemical species on the basis of solutions of the Langevin stochastic equation for the influence of eddies on the behavior of fluid elements. When the kinetic equations are solved for the structure of the diffusion flame established in a shear layer by the bimodal method, discontinuities in gradients of the mean concentrations at the two flame edges appear. This is a consequence of the bimodal approximation of all distribution functions by two dissimilar half-Maxwellian functions, which is a very crude approximation. These discontinuities do not appear when the solutions are constructed by the Green's function method described here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.