Abstract

The thermal degradation behavior of nylon-6 (PA6) and PA6/attapulgite (ATP) nanocomposites was investigated by thermogravimetric analysis under non-isothermal conditions at various heating rates in nitrogen. It is suggested that during thermal degradation, ATP, as a protective barrier, can slow down degradation of polymer, but the catalytic effects of structural water and hydroxyl groups may accelerate the degradation of PA6. The combination of these two effects determined the final thermal stability of nanocomposites. The apparent activation energies of the samples were evaluated by the Kissinger and Flynn–Wall–Ozawa methods. The results showed that the presence of ATP adversely affected the thermal stability of PA6. The degradation activation energies of PA6/ATP nanocomposites decreased monotonically with increase in ATP content; thus, it is suggested that the ATP has a disadvantageous effect on the thermal stability of PA6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.