Abstract

Abstract The non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere was investigated. The kinetic analysis of decomposition process was performed using Friedman (FR), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) isoconversional methods. The kinetic model was determined by the Malek's method. The composite differential method I was used for checking the established reaction model. It was found that the value of Ea calculated by composite differential method (Ea=147.1 kJ mol−1) represents the medium value between the values of the apparent activation energy calculated by FR (Ea,FR=152.8 kJ mol−1) and FWO (Ea,FWO=143.1 kJ mol−1) methods. Using two special functions (y(α) and z(α)), it was found that the two-parameter autocatalytic model (Sestak–Berggren (SB) kinetic model) with kinetic exponents M=0.23 and N=1.14 is the most adequate one to describe the decomposition kinetics of the studied system at various heating rates. The obtained non-isothermal differential conversion curves from the experimental data show the results being accordant with those theoretically calculated. It was concluded that the SB kinetic model can be used for a quantitative description of non-isothermal decomposition process of anhydrous nickel nitrate which involves the partially overlapping nucleation and growth phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.