Abstract

A fractal analysis, which takes into account the effect of surface heterogeneity brought about by ligand immobilization on the reaction kinetics in surface plasmon resonance (SPR) biosensors, is presented. The binding and dissociation of estrogen receptors (ERs), ERa and ER/spl alpha/ and ER/spl beta/, in solution to different ligands immobilized on the SPR biosensor is analyzed within the fractal framework. The heterogeneity on the biosensor surface is made quantitative by using a single number, the fractal dimension D/sub f/. The analysis provides physical insights into the binding of these receptors to different ligands and compounds, particularly the endocrine disrupting compounds (EDCs). These EDCs have deleterious effects on humans and on wildlife. Single- and dual-fractal models were employed to fit the ER-binding data obtained from the literature. Values of the binding and dissociation rate coefficient and fractal dimensions were obtained from a regression analysis provided by Corel Quattro Pro, 8.0. Values for the affinity K/sub D/(=k/sub d//k/sub a/) were also calculated. This provides us with some extra flexibility in designing biomolecular assays. The analysis should provide further information on the mode of action and interaction of EDCs with the ERs. This would help in the design of agents and modulators against these EDCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call