Abstract
A novel approach towards the design of coarsening-resistant nanoprecipitates in structural alloys was investigated by kinetic Monte Carlo (KMC) simulation. The approach is motivated by recent experimental results in Cu–Nb–W alloys showing that room temperature ion irradiation resulted in W nanoprecipitation, leading to exceptional stability of W-rich-core/Nb-rich-shell nanoprecipitates formed following thermal annealing (Zhang et al., 2013 [11]). Here, image simulations of atomically resolved scanning transmission electron microscopy are performed to establish that these W nanoprecipitates are highly ramified. Thermal precipitate coarsening in an A–B–C ternary alloy similar to Cu–Nb–W is then studied by KMC simulations, where the highly immiscible and refractory C solute atoms are initially distributed into fractal nanoprecipitates, or cores, which become coated by a shell of B atoms during elevated temperature annealing. Compared with nanoprecipitates generated by compact C cores, the ramified nanoprecipitates result in exceptionally high trapping efficiency of B solute atoms during thermal coarsening, and the efficiency increases with the cluster size. The KMC results are analyzed and rationalized by noting that, owing to the Gibbs–Thomson effect, when the curvatures of the shell of the precipitates are zero or negative, the microstructure is coarsening-resistant. Such morphology can be realized by facets, or by dynamic balance within positive, negative and zero curvatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.