Abstract

To elucidate the effect of the architecture of supported bimetallic nanocatalysts, we developed a new lattice kinetic Monte Carlo based on the classifying and counting adsorption sites with respect to their generalized coordination number. We employed this tool to estimate the activity of MgO-supported PtNi nanoalloys for oxygen reduction. We demonstrated that the presence of Ni atoms in contact with the substrate massively enhances their activity with at least a 7-order of magnitude increase in the turnover of water production with respect to the case where only Pt lay at the interface. We further discussed how the nanoalloy shape affects the activity showing that truncated octahedra are 102 more active than cuboctahedra of similar size. We explained our results in terms of their distinct distribution and occurrence of the most active sites for oxygen reduction leading to the stabilization of different chemical species during the reaction dynamics. Our results suggest that engineering multifaceted and long edge PtNi-nanoalloys with a certain chemical ordering at the support interface would improve their catalytic performance for the oxygen reduction reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.