Abstract

A kinetic model (effective equilibrium reaction zone model) was developed to simulate the decarburization reaction in the Ruhrstahl Heraeus (RH) degassing process. The model assumes that the chemical reactions reach equilibrium in the designated effective reaction volumes near the reaction interfaces. After the RH degassing process was divided into various reaction zones, the effective reaction volumes of each reaction zone were expressed as a function of the process conditions based on the physical descriptions of the reaction mechanisms. The influence of the chemical reaction between the RH slag and the RH steel to the decarburization phenomena was considered for the first time. The calculated C and O profiles by the present model are in good agreement with the industrial operation data for various steel compositions and process conditions. RH slag can serve as an oxygen reservoir to supply O during the RH decarburization process, which induces the observed deviation of the C and O contents from their ideal stoichiometric trajectory. The present model provides an efficient tool to understand the RH degassing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.