Abstract
The dynamics of collective protein motions derived from Molecular Dynamics simulations have been studied for two small model proteins: initiation factor I and the B1 domain of Protein G. First, we compared the structural fluctuations, obtained by local harmonic approximations in different energy minima, with the ones revealed by large scale molecular dynamics (MD) simulations. It was found that a limited set of harmonic wells can be used to approximate the configurational fluctuations of these proteins, although any single harmonic approximation cannot properly describe their dynamics. Subsequently, the kinetics of the main (essential) collective protein motions were characterized. A dual-diffusion behavior was observed in which a fast type of diffusion switches to a much slower type in a typical time of about 1–3 ps. From these results, the large backbone conformational fluctuations of a protein may be considered as “hopping” between multiple harmonic wells on a basically flat free energy surface. Proteins 1999;35:283–292. © 1999 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.