Abstract
In this work, a diffusion model was proposed to estimate the boron activation energies for FeB and Fe2B layers during the pack-boriding of AISI D2 steel at temperatures of 1223, 1253 and 1273 K for a treatment time varying between 2 and 10 h. This model considers the effect of boride incubation times during the formation of the FeB and Fe2B phases. To study the influence of diffusion annealing process on the boriding kinetics of AISI D2 steel, the mass balance equations were modified in order to follow the evolution of boride layers as a function of annealing time for the specified boriding parameters. Finally, the kinetic model was validated by a comparison of the experimental thicknesses of boride layers with the predicted ones at a temperature of 1243 K for 2, 4 and 6 h. A simple equation was then obtained for estimating the total time necessary to get a single boride layer (Fe2B) that depends on the boriding parameters and on the thickness of each boride layer prior to the diffusion annealing process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protection of Metals and Physical Chemistry of Surfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.