Abstract

Numerous studies have shown that there is an amorphous calcium phosphate (ACP) phase preceding the precipitation of crystalline hydroxyapatite (HA) in calcium phosphate solutions. It has also been shown that the addition of magnesium to the solutions has a stabilizing effect by inhibiting the transformation of ACP to HA. The stabilizing effect of Mg2+ is attributed to the stronger bonds between water molecules and the magnesium ions adsorbed on the surface of the ACP particles, making it harder for them to dehydrate. However, the kinetics of the reactions between calcium and phosphate ions to form ACP and then HA crystals, and the effects of varying concentrations of Mg on the kinetics have not been studied theoretically in detail. In this study, we develop and validate a kinetic model for analyzing such reactions. The pertinent rate constants are derived by calibrating the model against temporal changes in Ca2+ concentration reported by others. The predicted onset and growth of HA crystallization for sol...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call