Abstract

ABSTRACT The influence of CF3I on the burning velocity of methane–air flame is experimentally and numerically studied. Experimental results demonstrate that the inhibition effectiveness of CF3I is very close to that of CF3Br. A detailed kinetic model of flame inhibition by CF3I is presented, based on an updated version of a previous model. The kinetic model contains 1072 reactions with 115 species including 10 iodine-containing species. Modeling results demonstrate good agreement with experimental data, and both experiments and calculations show that CF3I is only slightly less effective at reducing the burning velocity than CF3Br. The flame structure predicted from numerical simulations is analyzed and shows that main reactions of the inhibition cycle of CF3I are as follows: H+ HI = H2 + I; H + I + M = HI+M; I + I + M = I2 + M; H+ I2 = HI+I; I+ CH3 + M = CH3I+M; H+ CH3I = CH3+ HI; I+ HCO = HI+CO; HI+OH = H2O+I and O+ HI = I+ OH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.