Abstract

Reduced graphene oxide/metal ferrite (rGO/MFe2O4, M = Cu, Co, Ni) nanohybrids are successfully prepared through a simple, one-step hydrothermal method. The rGO/MFe2O4 hybrids are characterized by XRD, TEM. The rGO/MFe2O4 nanohybrids demonstrate amazing catalytic activity on thermal decomposition of ammonium perchlorate (AP) based propellants. DSC results indicate that the high-temperature decomposition (HTD) temperature of propellants added with rGO/MFe2O4 nanohybrids (3 wt%), could decrease from 325.9 °C to 259.9 °C, 268.8 °C, 271.9 °C, 306.9 °C, respectively. The HTD activation energy on a conversion degree (α) range from 0.05 to 0.95 of propellant samples were investigated by two model-free methods Flynne–Walle–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that both methods had similar values of Ea, and they match well with each other. A strong dependence of Ea on α revealed a complex decomposition process. The model-fitting analysis suggested the HTD process of propellant samples with or without catalysts both followed Mampel (First order) reaction model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call