Abstract

Context. As a special case of astrophysical MHD shock waves, the solar wind termination shock is typically treated using the MHD jump conditions as they have been determined by Rankine and Hugoniot. A kinetic analysis becomes necessary for both a more detailed view of the governing processes and a deeper understanding of the plasma behaviour. Aims. In the case of a parallel shock, only an electric field can be considered as the main process decelerating the solar wind ions. This field leads to a strong acceleration for the electrons due to the other sign of their charge and the much lower mass of the electrons than of the ions. This situation enforces a two-stream instability, which is considered to be compensated by wave-particle interactions with electrostatic plasma waves. Methods. The kinetic approach leads to an equation in Fokker-Planck form, which can be solved by using It¯ o’s calculus for stochastic differential equations. Results. These two processes (electric field and wave-particle interaction) yield a decelerated subsonic solar wind on the downstream side of the termination shock, showing some new features in the ion distribution function, such as a double-hump structure and a comparatively large number of reflected ions. Within these considerations, we estimate of the spatial size of the shock region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.