Abstract

The bacterial cell wall is a polymer consisting of alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) units, cross-linked via peptides appended to MurNAc. The final steps in the formation of cell wall, also referred to as murein, are catalyzed by high-molecular-weight, class A penicillin-binding proteins (PBPs). These bifunctional enzymes catalyze both glycosyltransfer, to form the carbohydrate backbone of murein, and transpeptidation, to form the interstrand peptide linkages. Using PBP1b from Eschericia coli, an in vitro kinetic characterization of the glycosyltransfer reaction was carried out. Initial studies with unlabeled substrate (Lipid II) revealed that activity is strongly influenced by DMSO, as well as metal and detergent. In addition, a continuous fluoresence assay was developed and used to determine the effect of pH on the reaction. A single basic residue was titrated, with a pK(a) of 7.0. Taken together, these data suggest a mechanism for PBP1b where the glycosyltransfer reaction is catalyzed by the concerted effect of an active site base to deprotonate the glycosyl acceptor and a divalent metal to assist departure of the leaving group of the glycosyl donor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.