Abstract

The recently developed concept of DNA-based asymmetric catalysis involves the transfer of chirality from the DNA double helix in reactions using a noncovalently bound catalyst. To date, two generations of DNA-based catalysts have been reported that differ in the design of the ligand for the metal. Herein we present a study of the first generation of DNA-based catalysts, which contain ligands comprising a metal-binding domain linked through a spacer to a 9-aminoacridine moiety. Particular emphasis has been placed on determining the effect of DNA on the structure of the Cu(II) complex and the catalyzed Diels-Alder reaction. The most important findings are that the role of DNA is limited to being a chiral scaffold; no rate acceleration was observed in the presence of DNA. Furthermore, the optimal DNA sequence for obtaining high enantioselectivities proved to contain alternating GC nucleotides. Finally, DNA has been shown to interact with the Cu(II) complex to give a chiral structure. Comparison with the second generation of DNA-based catalysts, which bear bipyridine-type ligands, revealed marked differences, which are believed to be related to the DNA microenvironment in which the catalyst resides and where the reaction takes place.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call