Abstract
Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.