Abstract

In embryos of X. laevis, and many other species, early development requires targeted movements of molecules and molecular aggregates within the oocyte or egg cytoplasm. One well-known example in Xenopus is the aggregation of germ plasm, a group of cytoplasmic islands that become distributed during the first few cell cycles to cells that will give rise to the germ line. Nothing is known about the cytoskeletal motor proteins that may drive these movements. We show here that a recently identified Xenopus kinesin-like protein, Xklp1, is required for the aggregation of germ plasm in early Xenopus embryos, thus assigning this protein a role in a developmentally important cytoplasmic localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.