Abstract
Abstract Fundamental movement skills are considered the basic building blocks for movement and provide the foundation for specialized and sport-specific movement skills required for participation in a variety of physical activities. However, kinematic analyses of fundamental movement has not been performed. The aims of this study were to, (1) characterise the relationship between facets of fundamental movement and, (2) characterise the relationship between overall integrated acceleration and three-dimensional kinematic variables whilst performing fundamental movement skills. Eleven participants (10±0.8y, 1.41±0.07m, 33.4±8.6kg, body mass index; 16.4±3.1 kg·m2) took part in this study, had anthropometric variables recorded and performed a series of fundamental movement tasks, whilst wearing a tri-axial accelerometer and were recorded using a three-dimensional motion capture system. Maximum shoulder external rotation (°) and maximum shoulder internal rotation velocity (°.s−1) (r=0.86, p<0.001), mediolateral centre of mass range (cm) and centre of mass coefficient of variation (%) (r=0.83, p<0.001), maximum stride angle (°) in the jog and walk (r=0.74, p=0.01) and maximum sprint stride angle and maximum shoulder internal rotation velocity (°.s−1) (r=0.67, p<0.02) were significantly correlated. Maximum sprint stride angle (hip: r=0.96, p<0.001, ankle: r=0.97, p<0.001) and maximum internal rotation velocity (ankle: r=0.6, p=0.05) were significantly correlated to overall integrated acceleration. Overall integrated acceleration was comparable between participants (CV: 10.5), whereas three-dimensional variables varied by up to 65%. Although overall integrated acceleration was comparable between participants, three-dimensional variables were much more varied. Indicating that although overall activity may be correspondent, the characteristics of a child’s movement may be highly varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.