Abstract

Falls during stair descent pose a major health concern. A stronger understanding of recovery from balance loss during stair descent is needed to guide fall prevention strategies and environmental design. We characterized balance recovery strategies, trunk and center-of-mass (COM) kinematics, and handrail use following unexpected forward balance loss during stair descent, and the effect of perturbation magnitude on these outcomes. Eighteen young adults experienced a rapid platform translation during stair descent to disrupt balance. Deception was used to reduce anticipation. All participants used compensatory stepping to recover balance, and most applied forces to the handrail in multiple directions. Higher perturbation magnitude resulted in higher COM velocity and handrail forces, more frequent incomplete steps, and quicker step contact time. Our findings provide a foundation for understanding balance recovery on stairs. The findings emphasize the importance of designing stairways that enable compensatory stepping, and handrails that permit adequate force generation in multiple directions to facilitate balance recovery on stairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call