Abstract

Abstract The standard coupling from the past (CFTP) algorithm is an interesting tool to sample from exact Markov chain steady-state probability. The CFTP detects, with probability one, the end of the transient phase (called burn-in period) of the chain and consequently the beginning of its stationary phase. For large and/or stiff Markov chains, the burn-in period is expensive in time consumption. In this work, we propose a kind of dual form for CFTP called D-CFTP that, in many situations, reduces the Monte Carlo simulation time and does not need to store the history of the used random numbers from one iteration to another. A performance comparison of CFTP and D-CFTP will be discussed, and some numerical Monte Carlo simulations are carried out to show the smooth running of the proposed D-CFTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call