Abstract

Antiestrogen resistance of breast cancer has been related to enhanced growth factor receptor expression and activation. We have previously shown that ectopic expression and subsequent activation of the insulin-like growth factor-1 receptor (IGF1R) or the epidermal growth factor receptor (EGFR) in MCF7 or T47D breast cancer cells results in antiestrogen resistance. In order to identify novel therapeutic targets to prevent this antiestrogen resistance, we performed kinase inhibitor screens with 273 different inhibitors in MCF7 cells overexpressing IGF1R or EGFR. Kinase inhibitors that antagonized antiestrogen resistance but are not directly involved in IGF1R or EGFR signaling were prioritized for further analyses. Various ALK (anaplastic lymphoma receptor tyrosine kinase) inhibitors inhibited cell proliferation in IGF1R expressing cells under normal and antiestrogen resistance conditions by preventing IGF1R activation and subsequent downstream signaling; the ALK inhibitors did not affect EGFR signaling. On the other hand, MEK (mitogen-activated protein kinase kinase)1/2 inhibitors, including PD0325901, selumetinib, trametinib and TAK-733, selectively antagonized IGF1R signaling-mediated antiestrogen resistance but did not affect cell proliferation under normal growth conditions. RNAseq analysis revealed that MEK inhibitors PD0325901 and selumetinib drastically altered cell cycle progression and cell migration networks under IGF1R signaling-mediated antiestrogen resistance. In a group of 219 patients with metastasized ER + breast cancer, strong pMEK staining showed a significant correlation with no clinical benefit of first-line tamoxifen treatment. We propose a critical role for MEK activation in IGF1R signaling-mediated antiestrogen resistance and anticipate that dual-targeted therapy with a MEK inhibitor and antiestrogen could improve treatment outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call