Abstract

The RNA polymerase I transcription apparatus acquires and integrates the combined information from multiple cellular signalling cascades to regulate ribosome production essential for cell growth and proliferation. In the present study, we show that a subpopulation of A-kinase anchoring protein 95 (AKAP95) targets the nucleolus during interphase and is involved in regulating rRNA production. We show that AKAP95 co-localizes with the nucleolar upstream binding factor, an essential rRNA transcription factor. Similar to other members of the C2 H2 -zinc finger family, we show, using systematic selection and evolution of ligands by exponential enrichment and in vitro binding analysis, that AKAP95 has a preference for GC-rich DNA in vitro, whereas fluorescence recovery after photobleaching analysis reveals AKAP95 to be a highly mobile protein that exhibits RNA polymerase I and II dependent nucleolar trafficking. In line with its GC-binding features, chromatin immunoprecipitation analysis revealed AKAP95 to be associated with ribosomal chromatin in vivo. Manipulation of AKAP95-expression in U2OS cells revealed a reciprocal relationship between the expression of AKAP95 and 47S rRNA. Taken together, our data indicate that AKAP95 is a novel nucleolus-associated protein with a regulatory role on rRNA production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call