Abstract

Ketogenic diets are high in fat and low in carbohydrates, and have long been used as an anticonvulsant therapy for drug-intractable and pediatric epilepsy. Additionally, ketogenic diets have been shown to provide neuroprotective effects against acute and chronic brain injury, including beneficial effects in various rodent models of neurodegeneration. Huntington's disease is a progressive neurodegenerative disease characterized by neurological, behavioral and metabolic dysfunction, and ketogenic diets have been shown to increase energy molecules and mitochondrial function. We tested the effects of a ketogenic diet in a transgenic mouse model of Huntington's disease (R6/2 1J), with a focus on life-long behavioral and physiological effects. Matched male and female wild-type and transgenic mice were maintained on a control diet or were switched to a ketogenic diet fed ad libitum starting at six weeks of age. We found no negative effects of the ketogenic diet on any behavioral parameter tested (locomotor activity and coordination, working memory) and no significant change in lifespan. Progressive weight loss is a hallmark feature of Huntington's disease, yet we found that the ketogenic diet—which generally causes weight loss in normal animals—delayed the reduction in body weight of the transgenic mice. These results suggest that metabolic therapies could offer important benefits for Huntington's disease without negative behavioral or physiological consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.