Abstract

Therapies consisting of a combination of agents are an attractive proposition, especially in the context of diseases such as cancer, which can manifest with a variety of tumor types in a single case. However uncovering usable drug combinations is expensive both financially and temporally. By employing computational methods to identify candidate combinations with a greater likelihood of success we can avoid these problems, even when the amount of data is prohibitively large. Hitting Set is a combinatorial problem that has useful application across many fields, however as it is NP-complete it is traditionally considered hard to solve exactly. We introduce a more general version of the problem (α,β,d)-Hitting Set, which allows more precise control over how and what the hitting set targets. Employing the framework of Parameterized Complexity we show that despite being NP-complete, the (α,β,d)-Hitting Set problem is fixed-parameter tractable with a kernel of size O(αdkd) when we parameterize by the size k of the hitting set and the maximum number α of the minimum number of hits, and taking the maximum degree d of the target sets as a constant. We demonstrate the application of this problem to multiple drug selection for cancer therapy, showing the flexibility of the problem in tailoring such drug sets. The fixed-parameter tractability result indicates that for low values of the parameters the problem can be solved quickly using exact methods. We also demonstrate that the problem is indeed practical, with computation times on the order of 5 seconds, as compared to previous Hitting Set applications using the same dataset which exhibited times on the order of 1 day, even with relatively relaxed notions for what constitutes a low value for the parameters. Furthermore the existence of a kernelization for (α,β,d)-Hitting Set indicates that the problem is readily scalable to large datasets.

Highlights

  • The selection of a drug therapy for a disease is limited to a single drug, diseases such as cancer may present as a heterogeneous mix of subtypes of the general disease

  • The Fixed-Parameter Tractability of (a,d)-Hitting Set As we prove in the Materials and Methods section, the (a,d)

  • We are able to tune the nature of the hitting sets via the numbers k, a and b, which allows us to control which cell lines are targetted and how much each cell line is hit in the solution

Read more

Summary

Introduction

The selection of a drug therapy for a disease is limited to a single drug, diseases such as cancer may present as a heterogeneous mix of subtypes of the general disease. In cases such as these multi-drug therapies may prove more effective than single drug therapies, and many trials have been conducted to this end [1,2,3]. Combinations of drugs may allow a more targeted approach for a selection of subtypes of a disease, while minimizing effects on unaffected cells. The HITTING SET problem is a combinatorial problem that proves extremely useful in modeling a large variety of problems in many domains including protein network discovery [5], metabolic network analysis [6], diagnostics [7,8,9], gene ontology [10] and gene expression analysis [11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.