Abstract

BackgroundTechnological advances are enabling us to collect multimodal datasets at an increasing depth and resolution while with decreasing labors. Understanding complex interactions among multimodal datasets, however, is challenging. New methodIn this study, we tested the interaction effect of multimodal datasets using a novel method called the kernel machine for detecting higher order interactions among biologically relevant multimodal data. Using a semiparametric method on a reproducing kernel Hilbert space, we formulated the proposed method as a standard mixed-effects linear model and derived a score-based variance component statistic to test higher order interactions between multimodal datasets. ResultsThe method was evaluated using extensive numerical simulation and real data from the Mind Clinical Imaging Consortium with both schizophrenia patients and healthy controls. Our method identified 13-triplets that included 6 gene-derived SNPs, 10 ROIs, and 6 gene-specific DNA methylations that are correlated with the changes in hippocampal volume, suggesting that these triplets may be important for explaining schizophrenia-related neurodegeneration. Comparison with existing method(s)The performance of the proposed method is compared with the following methods: test based on only first and first few principal components followed by multiple regression, and full principal component analysis regression, and the sequence kernel association test. ConclusionsWith strong evidence (p-value ≤0.000001), the triplet (MAGI2, CRBLCrus1.L, FBXO28) is a significant biomarker for schizophrenia patients. This novel method can be applicable to the study of other disease processes, where multimodal data analysis is a common task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.