Abstract

Celestial spectrum recognition is an indispensable part of any workable automated data processing system of celestial objects. Many methods have been proposed for spectra recognition, in which most of them concerned about feature extraction. In this paper, we present a Bayesian classifier based on Kernel Density Estimation (KDE) which is composed of the following two steps: In the first step, linear Principle Component Analysis (PCA) is used to extract features to decrease computational complexity and make the distribution of spectral data more compact and useful for classification. In the second step, namely classification step, KDE and Expectation Maximum (EM) algorithm are used to estimate class conditional density and the bandwidth of kernel function respectively. The experimental results show that the proposed method can achieve satisfactory performance over the real observational data of Sloan Digital Sky Survey (SDSS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call