Abstract

One of the main challenges in the pixel-wise modeling analysis is the presence of high noise levels. Wang and Qi proposed a kernel-based method for dynamic positron emission tomgraphy reconstruction. Inspired by this method, we propose a kernel-based image denoising method based on the minimization of a kernel-based lp-norm regularized problem. To solve the kernel-based image denoising problem, we used the general-threshold filtering algorithm in combination with total difference. In the present study, we investigated whether diffusion-weighted magnetic resonance imaging (DW-MRI) data denoised using the proposed method can provide improved intravoxel incoherent motion (IVIM) parametric images. We also compared the proposed method with the method using the local principal component analysis (LPCA). The simulated DW-MR magnitude images are assumed to have Rician distributed noise. Computer simulations show that the proposed image denoising method can achieve a better bias-variance trade-off than the LPCA method. Moreover, the proposed method can reduce variance while simultaneously preserving edges in the parametric images. We tested our image denoising method on in vivo DW-MRI data, and the result showed that the denoised DWI-MRI data obtained using the proposed method can substantially improve the quality of IVIM parametric images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call