Abstract
KaiA, KaiB, and KaiC clock proteins from cyanobacteria and ATP are sufficient to reconstitute the KaiC phosphorylation rhythm in vitro, whereas almost all gene promoters are under the control of the circadian clock. The mechanism by which the KaiC phosphorylation cycle drives global transcription rhythms is unknown. Here, we report that RpaA, a potential DNA-binding protein that acts as a cognate response regulator of the KaiC-interacting kinase SasA, mediates between KaiC phosphorylation and global transcription rhythms. Circadian transcription was severely attenuated in sasA (Synechococcus adaptive sensor A)- and rpaA (regulator of phycobilisome-associated)-mutant cells, and the phosphotransfer activity from SasA to RpaA changed dramatically depending on the circadian state of a coexisting Kai protein complex in vitro. We propose a model in which the SasA-RpaA two-component system mediates time signals from the enzymatic oscillator to drive genome-wide transcription rhythms in cyanobacteria. Moreover, our results indicate the presence of secondary output pathways from the clock to transcription control, suggesting that multiple pathways ensure a genome-wide circadian system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.