Abstract

Inspired by Feynman integral computations in quantum field theory, Kontsevich conjectured in 1997 that the number of points of graph hypersurfaces over a finite field Fq is a (quasi-) polynomial in q. Stembridge verified this for all graphs with at most twelve edges, but in 2003 Belkale and Brosnan showed that the counting functions are of general type for large graphs. In this paper we give a sufficient combinatorial criterion for a graph to have polynomial point-counts and construct some explicit counterexamples to Kontsevich’s conjecture which are in ϕ4 theory. Their counting functions are given modulo pq2 (q=pn) by a modular form arising from a certain singular K3 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.