Abstract
We study the C*-closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact connected manifold X with non-empty boundary. We find short exact sequences in K-theory 0->K_i(C(X))->K_i(A/K)->K_{1-i}(C_0(T*X'))->0, i= 0,1, which split, where K denotes the compact ideal and T*X' the cotangent bundle of the interior of X. Using only simple K-theoretic arguments and the Atiyah-Singer Index Theorem, we show that the Fredholm index of an elliptic element in A is given as the composition of the topological index with mapping K_1(A/K)->K_0(C_0(T*X')) defined above. This relation was first established by Boutet de Monvel by different methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.