Abstract

In recent work Bruno Whittle has presented a new challenge to the Cantorian idea that there are different infinite cardinalities. Most challenges of this kind have tended to focus on the status of the axioms of standard set theory; Whittle’s is different in that he focuses on the connection between standard set theory and intuitive concepts related to cardinality. Specifically, Whittle argues we are not in a position to know a principle I call the Quantificational Hume Principle (QHP), which connects the application of intuitive, quantificational cardinality concepts (including ‘at least as many’) to claims involving the existence of functions. This paper responds to Whittle’s skeptical arguments by providing an argument justifying the QHP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.