Abstract

ABSTRACT The accuracy of plate welding substantially impacts the quality of the final hull and the hull construction efficiency. To control the accuracy of plate welding, one effective method is to estimate the extent of plate welding compensation for planning a reasonable accuracy management plan. This paper proposes a method that utilizes a Gaussian mixture model (GMM) and just-in-time learning (JITL) for this purpose. To develop the method, the raw data collected by the shipyard were used to perform accuracy judgment and missing value processing. Then, correlation analysis of various parameters and feature extraction methods were implemented to extract features that can be used to predict the compensation of plate welding. The plate welding process can be divided into different stages by using GMM to cluster the different data distributions. To track the welding process, the local models should be established based on the JITL principle. By comparing the performance of different models, the support vector regression model optimized by the particle swarm optimization algorithm was applied as the local model of the JITL model. The results demonstrated that the proposed model yields excellent compensation prediction performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.