Abstract

A novel direction of arrival (DOA) and polarization estimation method with sparse conical conformal array consisting of concentred loop and dipole (CLD) pairs along the z-axis direction is proposed in this paper. In the algorithm, the DOA and polarization information of incident signals are decoupled through transformation to array steering vectors. According to the array manifold vector relationship between electric dipoles and magnetic loops, the signal polarization parameters are given. The phase differences between reference element and elements on upper circular ring are acquired from the steering vectors of upper circular ring, it can be used to give rough but unambiguous estimates of DOA. The phase differences are also used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two array elements on lower circular ring. Without spectral peak searching and parameter matching, this method has the advantage of small amount of calculation. Finally, simulation results verify the effectiveness of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.